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Solving functional nonlinear equations leads to the question: which to begin with, linearization or discretization?
Recent papers confirmed that linearizing then discretizing (L.D) is better. In this paper, we develop a new nu-
merical scheme that begins with the linearization phase and then, a double discretizations process (L.D.D). This
new method gives a different theoretical framework where the convergence process is satisfied under some hy-

potheses. Many examples are offered to show the effectiveness of our new scheme. Starting with a comparison of
the obtained numerical results with the results of a recently published research, moreover, applications to the
system of nonlinear integro-differential equations. Obtained numerical results show that our (L.D.D) method is
more efficient for solving nonlinear functional equations.

Introduction

Integral and integro-differential equations appear naturally in many
fields of applied mathematics, where multiple theoretical and numerical
studies are well investigated. See, e.g. Atkinson et al. [1]; Nair [2]; Fer-
nandez et al. [3]; Cakir et al. [4]. In the complex Banach space y, let F :
VCy — x be a nonlinear Fréchet differentiable operator defined on a
nonempty open set )V of y. In general, the nonlinear integro-differential
equations are set as

FindpeV: F(p)=0,. (€}

Many methods have been constructed to find the approximate solu-
tion to these problems. See, Chakraborty et al. [5]; Mundewadi et al. [6];
Katani [7]. To solve this class of nonlinear functional equations, we
generally use the classical process, which depends firstly on the dis-
cretization of equation (1), so we obtain a nonlinear algebraic system,
and then the linearizations of these discrete nonlinear equations using,
for example, Newton's iteration method or Banach's iteration method. For
instance, many results concerning the classical process, denoted (D.L),
have been achieved to solve these kinds of equations. See, e.g. Bounaya
et al. [8]; Touati et al. [9]; Mirzaee et al. [10].

Mathematics Subject Classification(2010): 90C30;65H05;65D07

In a recent paper, Grammont et al. [11], the authors develop a nu-
merical process called the Newton-Kantorovich's method. They construct
a practical process based on the inverse way of the classical strategy.
They start with the linearization phase of equation (1) and then go to the
discretization phase. This (L.D) process has confirmed the high efficiency
compared with the classical strategy (D.L) by theoretical and numerical
results given in Grammont et al. [11-13] and recently in Khellaf et al.
[14,15]. However, there are several works concerning elliptic PDEs such
that the method used is consistent with the (D.L) strategy (see Gavete
et al. [16]; Weiser et al. [17]).

This paper uses the same developed process as in Grammont et al.
[11]; Khellaf et al. [15], but with a different discretization method. We
start with the linearization phase and propose a double discretization
phase, where this process will be denoted as (L.D.D), where it is called
sometimes by” outer-inner iteration” process. This paper aims to create
an (L.D.D) process that gives more smoothness and precision concerning
the calculation part in the programming stage during the resolution
procedure. The scheme (L.D.D) was introduced recently for the first time
in Khellaf et al. [15], where the authors apply Sloan's method for the
discretization phase. In this work, we apply Kantoroviche's method for
the discretization phase, which gives us a different theoretical framework
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and shows fast convergence compared to Khellaf et al. [15]. In addition,
the authors of paper Ahues et al. [18] propose a similar (L.D.D) scheme to
solve nonlinear weakly singular integral equations.

The paper is organized as follows: In section 2, we present the main
theoretical convergence results in which, under suitable assumptions on
the (L.D.D) process, the sequence constructed converges to the exact
solution of the main problem. In section 3 and 4, we illustrate these re-
sults with a numerical study and applications showing the accuracy and
efficiency of our algorithms.

Theoretical results of convergence study

Let y be a complex Banach space, where its norm is denoted by || -||.
The space L£(x) defines the Banach algebra of bounded linear operators
from y to itself, where its norm is given by:

VAEL(), ||l =sup{[|Ax]|: [Ix[| <1}

Let assume that the main problem (1), has a unique solution, i.e.

(H)) 3peV: F@) =0,

In general, to solve such a problem, we attempt to follow the Newton-
type method applied in a finite-dimensional space. So, by linearizing

equation (1), the exact solution is characterized as a limit of a sequence
(™), Which is given through the following scheme:

F @)t —p®) = —Fp®), 0 eV, )

These iterated equations define the linearization phase. At this point,
the difficulty of dealing with the exact formulate of F () becomes a
major stumbling block in each iteration, because we are dealing with
infinite-dimensional functional nonlinear equations. For this reason, we
assume that.

(Hy) F(p)" exist, and 35 > 0 such that HF (lp)*H <5< oo

k=1,2,-

The convergence of Newton's method can be found in the book of
Argyros et al. [19]. On the other hand, we can not compute F (x/ﬂ”)fl
exactly in each iteration. Thus we apply the discretization phase on scheme
(2), so we define the following (L.D.D) iterate scheme, which is founded on

a double discretization phase: Find pt!) € y, where n.m e N

Fo(map ) @) — ) (©)

The first discretization phase is applied on the operator F (x), which is

=—F(mph), 2 eV, k=12-.

approximated by F, (x), and the second phase discretization is defined by
involving the operator projection (7),,,, defined from y into itself, on

F(-) and F,(-) where, this projection satisfies the condition:

YWwey, am,yv—ov, m- .

In the following, we show that the sequence (%)), defined by problem
(3), converges to y, the solution of equation (1), for k tends to infinity and
the integers n and m are fixed. Let be Bgr(y) the ball of center y and radius
R > 0. We assume that

(Hs) F :V— L(y)isA— Lipschitz over Bg(1)).

We define the constant r such that,

ri= min{R,z%ﬂ}.

For n large enough, we suppose also that the discretization process
satisfies the following condition,

(Hi) VxeVcy, |Fn(x)—F )| <6 -0, asn— c.

The condition (Hy), is a sufficient condition to ensure the convergence
of scheme (3). This condition is not satisfied by Sloan's method (See,
Ahues et al. [20], page 187) which is established in Khellaf et al. [15] for
an (L.D.D) scheme. However, we will show in the next section that
Kantorovich's method will be holds with the condition (Hy).
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Before starting the study of the convergence, we establish a series of
lemmas that will be used in the proof of our convergence theorem.

lemma 2.1. If the hypotheses (H;) — (H3) are satisfied, then for all x €

B, (y), F (x) is invertible such that HF' (x)’1 H <2

Proof 1. Let x € VCy, then F (x) = F () (1 —F ) '[F () - F (x)] )
thus

[F @) [F @) = F @ < [[F @) [[IF @)~ F &)l

Now, according to hypothesis (Hsz), for all

HF/(I/’) — F (x)|| < Ar. Hence

x € B{y),

/

ro , 1
IF @) (7 )= F @) ]| <nir <5
So, using the Geometric Series Theorem (see Atkinson et al. [1]), we

conclude that F(x) is invertible, such that F (x)’1 =

(1 —F ) '[F () - F () )*1F’(¢)*“ In addition, we find that

HF,(X)7]H _ H(I _ F’(lp)*l[F’(lp) — F,(x)] )71F’(l/))71 H

which completes the proof.

lemma 2.2. Assume that (H;) — (Hy) holds, then for all x € B,(y) and
for n large enough, the operator F,(x) is invertible such that,
sup

= Fo) ' F )| < pus sup R0 < 2001+ p0),
x€B; (i) xEB (i)
where p, > 0 asn — oo.
Proof 2. For all x € B,(y), and for n > 1, then by Lemma 2.1 F, (x) =
F (x) (I —F (x) 7 [F (%) — F,(x)] ) So, according to the hypothesis (Hy),
such that &, <, we find that HF/(X)’1 (F (x) = Fo(x)) H < 2n6, < 1.
Now, using the Geometric Series Theorem, we conclude that F,(x) is

/-1 2
Fn(x) H < 1—277&,.

invertible, and ‘ . On the other hand, we notice that I —

Fo(x)'F (x) = F,(x) " (F,(x) — F (x)). So, we define the sequence

— _216n
Pn = 1245,

Thus, sup xeBr(w)HI —F,(x)'F (x)H < pp. Similarly, we find

the estimation,

F(x)" H < 21+ 2#p,,. This completes the proof.

lemma 2.3. Let L(-): ¥ — x be a a-Lipschitz operator. For all x € y, if
L(x)' € L(y) such that HL(x)’1 H <, then, L71() is (u%a) — Lipschitz.

Proof 3. For all x, y € 1y we have, Lx) ' = L)' =
L) (L(y) — L(x))L(y) ", hence

L@ =)' < L@ TIZE) — L@NZe) ™| < wallx .-

Proposition 2.1.
enough

Assume that (H;) — (Hy4) holds. Then, for n large

’

F, () "is(2+2)(2n(1 + p,))* — Lipschitz for allx € B, ().
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Proof 4. For all x, y € B(y), then

/

F,(x) = F,() = (F,(0) = F (1) + F () + (F () -

So, using (H3) and (Hy4), we find that

/

F,(5) = F ().

1@ = EOI < |7 @)~ F @l + [F,0) = F0)| + IF &)~ F )l

< 8+ 6, +Alx—yl
< 28, + Allx -yl

Now, it is clear that, for n large enough such that x # y, we choose
6n < ||x — y||- Thus

/ /

F,(x) = F,0|

< @2+Dx =yl

So, we conclude Fn (x) is (2 + A)- Lipschitz, and according to Lemma
2.2 we have

IF

)7 < 2n(1+p,)
and according Lemma 2.3, we find that
F() is@2n(1+p,))(2+2)

Thus, we have completed the proof.
Let the constants 7, R, 4, p, be defined in previous lemmas. We define
also the constant # such that,

— Lipschitz.

w9 = FL ) [Fel) - F@)] = [ [1-Fuf)

1

(1 F )

Il
S— S— 5—

Vx,yeV: |[F(x)=FO) <Zlx—yll.
The next theorem, is the principal result of our paper.

Theorem 2.1. If the initial function %), € B, (), for n,m € N. Then
the sequence (%)), defined by the scheme (3), converges to y the
solution of equation (1), such that

k
‘ < w, (%) =%,

where,

o

o —mind " l—p,—4f(1+p,)
" 22[/1;1( +p,) +EQ+2)2n(L+p))] |

Proof5. Letn,me N.Ifp{?) € B, () then according to Lemma 2.2, the
operator F,(\%)) is invertible. Now by induction we assume that

l/)ﬁlk,% € By, (). So, we have according to scheme (3),

F (1=, +xp)] (48

FL )™ [F (1= x, + xp) -
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Wi ¥~ (a, wffi,)"F(nmwa;)

=—F,(map) F(85) ~ Fmnp) " [Flma) —F o)
—[FLmp ) = F, ) | F) —FL ) Fel)
—F, et 5) " [P~ F@5,)].

Hence,

P —p = 9, -y - F ) [Fe) - Fo)]

~[FL )™ = FL w8 ] [Fel) - Fo)
—F, (wp5) " [Flmapl) = FL)] -
So,
e = ] <[l — 0 - Fw) ™ [Fot) - Fw)] |

+] [ (abi";)"] [F(yb;ﬁl,)—F(w)} |
Fmn) " [Famn) - P, |

In this step, we estimate each part of this inequality separately. For
the first part, we use the integral form of Lagrange’s mean value formula
(See Zarbrejko et al. [21] as follows:

—P)dx

F )] (v, - p)ax

F )] (v, - wax

and
[, = 0 = R [Fel) - Fw)] || < 7= Fwl) ™ F w48
=]+ o o — ] [ o — F )

Now, since p*) € B,,, (), and according to Lemme 2.2, we find that

F @) < p,,

(AT

and given that the ball B,,, (i) is a convex set, so for x € [0,1],(1 — x)
zpfl",),, + xp € B, (). We use (H3) to get

|F (1 =298, +x9) — F )| < axws — v
hence
[ w0 - F g e

So, we gather the first estimation as:
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8, v F, ) [Faln - F)] | <o)
+ (2140, [0~ ] ) 52029

For the second part, as F is a Fréchet differentiable operator, there
exist £ > 0 such that

W) <t

|Fs,) - F ]

and according to Proposition 2.1 we have

[P ™ = Fuwi)™] || < @+ D@n 40,07 mts, — 95|
hence
| [Fatamp) ™ = Eutwin) | [Foi) —F)] | <

£(2+2)(20(1 + pp))*
For the third part, as

<kr)n _ lpHHﬂmlP,gk,L - ‘/’5121“

H F(ﬂml/’ik,,)n) -

| < e

F(lpn m lpn m

and y* € B,,(¢), so using the convergence of m, to the identity
operator, we find that.

TP, & Ve > 0,3mp € N Vm>mo7‘ﬂm¢<k> — H <e,
Now, w,bH
we get
mt s, — || < [| s, — 05| + ||, - ]| <20 9] <

So, we conclude that 7%, € B,,, (), and according to Lemma 2.2

P )| < 201 +p,).

Then,
Fo(mm )" Pl ) — F)| < 2001+ po)e|mmsh — 95|
Hence,
szt =l <ol o] + (ancr-40) o ¢H)H¢m ol
@+ +p,) 9, wHHn 9, 5|
+ 206 (1+p,) |map ), — L),

and with more simplification, we find that

V= y|| < ([pu+20e 400+ 1+ p,)

o)

nm

+e@+2)@1(1+p,))] |98

-9

Table 1
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Now, we define the constant o, such that

W, := min

.{TZHMI

So, as Y € B,

L—p,—4f(1+p,) }
+p)+HEQ+ D)@ +p,))] [

(), we obtain that

1—p,—4¢(1+p,)

[an(1 +p,) + €2+ D@1 +p,))] [0, - v < : ,
hence
Jos o] < (5 oz -]

As 1 < 1 that gives p:!) € B,,, (). Finally we get the desired result

o o] < (52) 5o

This completes the proof.

The following section will confirm our theoretical results by applying
the (L.D.D) scheme with a double Kantorovich’s discretization to solve
nonlinear Fredholm integral equations. We selected Kantrovich’s method
because it assures a fast convergence process and satisfies the condition
(Hy), unlike the case of the (L.D.D) scheme with a double Sloan’s method
(See, Ahues et al. [20] page 187).

Remark 1. Theoretically, the (L.D.D) new scheme is batter than the
(D.L) classical method in the sense that 1/:2"2,1
and m big enough for the (L.D.D) scheme, unlike in the (D.L) classical
—Ppask - +ooand n - +oo.

—  as k — +oo0 whatever n

method, where p®

Application on nonlinear Fredholm integral equations using
Kantorovich's projection

In this section, we will show how we use the hypotheses (H;) — (H4)
of Theorem 2.1 on the numerical examples provided. Let y be the Banach

space of real continued functions defined [0, 1]. Let K: ¥ — y be a
nonlinear integral compact operator defined as:

K(x)(t):/o k(t,5,x(s))ds, xeV, te[0,1],

where the kernel « is regular such that the operator K is Fréchet differ-
entiable. We denote by D = K’ the Fréchet derivative of K such that

Vx €y, D)V () = /0 g(z,s,x(s))v(s) ds, vey, te€]0,1].

We set our problem as follows

Find p eV, y(r) = /l k(t,s,9(s))ds+g(tr) t€]0,1], )

0

Numerical results of example 1, where we compared between our (L.D.D) scheme applying Kantoroviche method and Khellaf et al. [15]-(L.D.D) scheme applying Sloan's

method and the (D.L) classical method.

The error Ey,, if 2= 0.1, n =10 and m = 10

k (L.D.D)-Sloan of k (L.D.D) CPU time k (D.L) CPU time
Khellaf et al. [15] Kantorovich Classical

k=02 2.20032 e-01 k=02 8.15484 e-01 5.2 e-02s k=02 9.25584 e-01 8.1 e-03s

k=06 5.11577 e-03 k=03 4.66889 e-02 1.1 e-01s k=03 5.69889 e-02 2.4 e-02s

k=10 1.71509 e-04 k=04 8.62274 e-05 1.7 e-01s k=04 5.69889 e-02 7.3 e-02s

k=14 5.49420 e-05 k=05 8.97570 e-08 2.4 e-01s k=05 5.69889 e-02 1.2 e-01s

k=18 5.59317 e-05 k =06 8.80032 e-08 3.1 e-01s k=06 5.69889 e-02 1.5 e-01s
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for a given function g € y, and we can rewrite this problem as

Find pey, $=KW)+sg.

Let &, = [e1,...,e,] € x* be an order basis, where ¢, = [e],...,e] €
(x")" is the adjoint order basis of ¢,. We define the operator projection rp:

(5)

n
X = Z (x,¢€))e;,
=

where (., -) is the duality brackets between y and its dual space y*. Now,
we define some of the notations in advance to use them to clarify the
description of matrices and linear combinations:

X =31 X(j)e forall X e C,

<V,e > (ij) =< vj,e; > forall V= [vy, va, ..., V] € ¥ ™

With the previous notation, we can write

Tx =€, K X,e,

> XEY.

As we defined in the last section, by applying the (L.D.D) process to
solve problems like problem (5), we begin by the linearization phase
using the Newton scheme to get the linear operator equation as follows:

(1= D) B - ) = —FpY),

Next, for n,m € N*, we apply a Double discretization Kantorovich
projection to get our discretized linear problem: Find p*+V) ¢

nm

PP e, 6)

k=1,2,....

lp(k+1) _ ”nD(n.mlP(k) )lp(kJrl) — S(k)

nm?

)
Sion = K@) = mD(mty) )L, + 8-
We suppose that
(i) Problem (5) has a unique solution p €V,
(if) (I — D(y)) is invertible, 37> 0, |1 —D))"|| <7 < oo,
(iii)D:V — L(x) is A — Lipschitz over Bg(i).
(€))

Kuwait Journal of Science 50 (2023) 65-74

By the previous assumptions, we guarantee the fulfillment of the
hypotheses (H;) — (Hs), and now we must prove that the rest of the
hypotheses are confirmed to apply our convergence Theorem. We recall
that the discretization process defined in problem (7) is based on the
double approximation as follows:

For all n>1, D,(x):=mD(x), x€y.

As in Lemma 2.1, we can prove that, for all x € B,(¢), (I — D(x)) is
invertible and

[[(1 = D)) < 2n.

Proposition 3.1.
also that

Assume that the hypotheses (8) hold, and we suppose

1. VX € ¥, X =%,
2. The set

Z:={D(x)z | x€Br(¥), z€, [zl =1},
is relatively compact. Then

sup ||D,(x) — D(x)|| < Sum 370,
XEBr ()

Proof 6. The set Z is a relatively compact set, so , tends to the identity
operator I pointwess, thus we conclude that the pointwise convergence
on relatively compact sets is a uniform convergence.

We note that the Kantorovich projection method verifies point 1)
of Proposition 3.1 (see Ahues et al. [20] pp.185). Moreover, the
integral operators are compact operators, so point 2) of the same
proposition is well verified. By using Proposition 3.1, hypotheses (8)
and according to Lemma 2.2 we can determine that the operator
(I — Dy(x))"* is invertible and.

sup. [0 = Duoe) | < 2001 + 200,

XEB (P

1.
"'".exl
o,
0.5 —o—o —~, - p— ¥'2 e
: oo oo oo oo oo o oo O o u®
O - -
1 1 1 L 1 1 1 L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
0 - : : : .
£ -0} #* .
Ll <l
g 20t .
*
-30 E i i i i 3
1 2 3 4 5 ] T
k

Fig. 1. Approximate solutions of example 1, using (L.D.D) Method.
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where r, p, are parameters defined in Lemmas 2.1 — 2.2. To this point,
we have satisfied all the hypotheses of Theorem 2.1. Thus, we have
guaranteed that

lp;k)n““’lp for n,m fixed in N.

Let us concentrate on the implementation of our (L.D.D) scheme. We
remark that,

Sélk;)n = K(ﬂmlplefr)u) - ﬂ"D(”mlpfq’fr)n)lpn m + &

and we can write,

(I =m)pis? = (I = 7)8), = (I = m) (K (ma)) + ),

and accordingly
v = (= m) (K(za)) +8) + &UL,", ©
where U %1 ¢ C" is a column vector we get it by solving the following

linear systern

( — MU = )

nm?

where for 1 <1i,j <n, we have.
MO (i) = < D(En)en, &, > (i) = (D(ampX))ej €)).
di(0) = (K(mnplh),) e) - (Dl o€+ (g.e) +
D(xmplf) (I = 70) (K (i) + 8)€7)-

The technique of creating a system of nonlinear Fredholm integro-
differential equations

This subsection explains how to create a system of nonlinear Fred-
holm integro-differential equations starting from one equation. More-
over, rewrite this system in the same form as our main problem (5) to
solve it by applying our (L.D.D) scheme. Consider the following integro-
differential equation:

P(r) = / K(t7 s, lp(s),lp,(s), ..A7¢(N’l)(s))ds +g(1), te][0,1], (10)

0

For t € [0, 1], we derive this equation (N — 1) times to obtain the
following system

¢’(z>:/ f,’j(r S () (), o pV 1 (s) ) s+ (1), an

Table 2
Numerical results of example 2.

Kuwait Journal of Science 50 (2023) 65-74

If we set, forall 1 <i <N, g(t) = g(i’l)(t), wit) = y/(i’l)(t) and x; =

‘)(’ , we get the following system

oti-1

80 =00 = [ K150 0) ey () 210,
00 =# 0= [ et (o) ) H 45, a2

() =9 V() :/ K (1,8, (8): 9 (5), -,y (5))ds + g (1)

0

This system can be rewritten as the ensuing structure

Find i € Hc ([0,1,R),  p=K(@)+G. 13)
[ &1 K

where p= | ¥2 |.G=| & | k=% | and Ki= [Ix(t,5.1(5))ds,
Py &N Ky

and the problem (5) and (13) become the same, so we can apply our
(L.D.D) scheme to solve the problem (13) as we will do in the numerical
examples in the next section.

Numerical examples

In this section, we confirm the efficacy of our (L.D.D) scheme by solving
three problems. In the first example, we will solve a system of nonlinear
Fredholm integro-differential equations, which has been treated in Khellaf
et al. [15], where it is solved by the (L.D.D) scheme using Sloan's dis-
cretization, what is more, we will compare the results obtained in Khellaf
etal. [15], the (D.L)-Classical method and our results obtained by applying
the (L.D.D) scheme applying Kantorovich's discretization. In the second
and the third examples, we will treat a system of two and three (respec-
tively) nonlinear Fredholm integro-differential using our (L.D.D) scheme
and the (D.L)-Classical process. All results of numerical applications are
summarized and offered in tables and figures separately.

First, letn € N", and considering the equidistant subdivision 4, of [0,
1] defined by:

Ay = {tp:ph h=1ip=01,..,n}.
Let (z,bn AT AT N) € Vcy, k € N the k order approximative

solution of our equations system (13) according to scheme (7) obtained
bu apply the (L.D.D) method. We specify the stopping condition on the
parameter k as:

<107,

lpnmx()) lpnmx( )

N
Ef‘, = max
< 0<p<n
i=

We denote the obtained error formula by

N
H m
Z p</1

(k)
xc,w - lpn.m,i(tp)

The error Ey,, if z =10 atk =3

n (L.D.D)-Kantorovich (D.L)-Classical

m = 50 CPU time m = 100 CPU time m = 50 CPU time m = 100 CPU time
5 6.6891 e-08 9.3 e-02s 1.6226 e-08 1.1 e-01s 1.0146 e-02 1.3 e-02s 1.0146 e-02 1.3 e-02s
20 4.1586 e-09 5.9 e-01s 8.5297 e-10 6.6 e-01s 1.0096 e-02 4.5 e-02s 1.0095 e-02 5.2 e-02s
50 1.1830 e-09 2.6 e-00s 1.8573 e-10 2.8 e-00s 1.0094 e-02 2.5 e-01s 1.0093 e-02 2.0 e-01s
100 1.0354 e-09 9.2 e-00s 5.9792 e-11 9.6 e-00s 1.0094 e-02 5.5 e-01s 1.0093 e-02 5.8 e-01s
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where, Pext = (Y1 exe» Paextr - Unexe) € VCX is the exact solution of the
initial equations system (13). We pass directly to the numerical examples.

Example 1. Consider the following nonlinear Fredholm integro-
differential equation

p() = Z/O (exp(t)($(s))” — exp(=1) (¥ (s))")ds +g(r), z€ R,z €10,1],
a4

with ¢ € C'([0,1],R), and the function g is given by

8(1) = VI+1 =2 (6exp(1) — log(exp(~1), 1€ (0,1,

We derive equation (14) to obtain the following system of nonlinear
integro-differential equations

Kuwait Journal of Science 50 (2023) 65-74

O / (exp(t) (B(5))* — exp(~0)(p (s))?)ds + (1),
0 (15)

’

Y=z /0 (exp(1) (9(5))” + exp(=1)(§ (s))*)ds + g (1),
and the function g is given by

0= a—-
SR

So, system (15) is similar to the following system

2 (6exp(r) + log(2)exp(—1)). 1€ [0,1].

5.0 =2 [ (xp() 8,9 ~ exp(-0)(96)))ds + 10,
0 16)

P(t) =2 / (exp(0) (1, ()" + exp(—1) (B (5))7)ds + (1),

where ¥ = (\/1 +t.3 \/i?) is the exact solution of our system.

Algorithm 1: (L.D.D) Algorithm

Data: n,m, g, Yest
Result: E,, ,,, plot (wVSf#), eat,log(e))

Initialization: "), < 0, M\" < 0y, ds
while Eff > Tol do

for i < 1tondo
for j < 1ton do
Calculate and save ]\/I,(ll€> (i,7);
if i=j then
AP 1 - MP g
else
| AP — M)
end
end

Calculate and save d,,ELk)(i);

end

X e (A /s
of the linear system)
for p + 1 ton do

*/

7rng(t) ~— 7Tng(t) + .(](Tn(p)) . ep(t)§

(0)

K (1) ¢ T K (1) + K (T,(p) - e(0);

VS

(Increment the number of iterations k by 1)

— Op, k< 1,Tol + 10712, EF

(p).

— 1;

n,m

(Calculate and save the vector solution

ep(t);

(Save the previous iterate solution, k =

(Calculate the iterate error)

*/

enXPV (1) e, XV (1) + x Y
end
Sl () = K (1) + g(t) — K () — mag(t) + en XD (0):
D@ pEnty 7
1,2...) */
E,]i m(t) < max 'g/}&,ﬁl)(t) — LZJy(Lk7)n(t))
! te[0,1] ’
*/
k+—k+1; / *
end

Enn = max [0l (6) = ()

t€[0,1]

exact solution and the last iterate solution)

s/

(Calculate the error between the

*/
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Fig. 2. Approximate solutions of example 2, using (L.D.D) Method.

Example 2. Consider the following nonlinear Fredholm integro-
differential equation

¥(1) :;—0/0 cos (exp(s) + arccos (STH) +(s) — 1/)/ (s) )ds +g(1),
z€R,1€10,1]

aa7)

with ¢ € C'([0,1],R), and the function g is given by

g(r) = texp(t) — (TZb (t + %) reo,1].

We derive equation (17) to obtain the following system of nonlinear
integro-differential equations

W(r) = %/0] cos(exp(s) + arccos(s ;— t) +9(s) — ' (s) )ds +g(1),

W (1) = &/01 \/1<1S7+t)zsin (exp(s) + arccos (ST—H) +(s) — P (s) )ds + ¢ (1),
3

and the function g is given by

g (1) = (1+1)exp(r) — 6Z—0, t € [0.1].

So, system (18) is similar to the following system

¥, (1) = Z—ZO/O] cos <exp(s) + arccos (STH) +,(s) — h,(s) )ds +a1(p),

W, (1) = 6710/0] \/IES—H)zsin (exp(s) -+ arccos (STH) + 1, (s) — 1, (s) )dS +&:(1),
3

where Y., = (texp(t), (t+1)exp(t)) is the exact solution of our system.

Example 3. Consider the following nonlinear Fredholm integro-
differential equation

1:
b =55 /0 b‘fff) (2mp(s) +§ (5)* — cos(ms)p" (s))ds +g(1), z€R,1€[0,1],
with i € C%([0, 1], R), and the function g is given by 0

g(t) = cos(nt) — te0,1].

wm
25(1 +1)'

We derive equation (20) two times to obtain the following system of
nonlinear integro-differential equations

(18)

(19)
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— 2 [ (o) + 57 coslas (9) s + (),

w’m:f%f

90 = 5 [ S (2mpls) 49 60— costas)g () s + )

sin(7s)

(Lt (2mp(s) + ¢ (s)” — cos(zs)p"(s)) ds + g (1),

(1+1)
(21
where g (t) = —zsin(at) + ﬁ and g’(t) = — n%cos(nt) — ﬁ,

and by the same notation technique always do, system (21) is similar
to the following system

00 =25 [T 2 (5) + 67— cos(as)py (5D ds + 1),

I+1
0= 55| S 0, 0+ 67— con(ms o) s + £20),
00 = 55 [ S 0, 0+ 9,07~ ol () -+ ().
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where Ve = (cos(rt), —asin(xt), —wcos(xt)) is the exact solution of our
system.

The results of (L.D.D)-Kantorovich's, (L.D.D)-Sloan's and (D.L)-Clas-
sical applied on example 1 are indicated in Table 1 and Fig. 1, which
confirm that our process is more powerful based on the error value ob-
tained, and its approximate solution converges in 6 iterations (k = 6),
where it is faster than the (L.D.D)-Sloan's method that converges in 18
iterations (k = 18) and faster than the (D.L)-Classical method that do not
get the convergence for n small. Table 2 shows that our (L.D.D)-Kant-
orovich's method gets better where we increase n and m, with a small
number of iterations (k = 3) (See, Fig. 2) and the (D.L)-Classical process
do not converge for a small n. Table 3 demonstrates that the best
approximate solution can be obtained with a fixed n (at most 15) and the
more we increase m (at most 30), the more we get a better approximate
solution (See, Fig. 3), unlike the (D.L)-Classical method that needs to take
n bigger than 1000 or more to get the convergence. These results
correspond to the theoretical part that we presented in this research.
However, in the three tables, we also compared the execution time of the
(L.D.D)-Kantorovich's and (D.L)-Classical methods, and we got similar
results, where we used Matlab computation software, with a machine of
type Intel(R) Core(TM) i7-8665U CPU @1.90 GHz 2.11 GHz and 32 GB

(22 pam
Table 3
Numerical results of example 3.
The error E,, if z=0.1,n=15atk =5
m (L.D.D)-Kantrovich CPU time (D.L)-Classical CPU time
5 1.037871850698868 e-04 2.92s 7.7395458721862 e-02 1.65s
10 4.615256983570827 e-06 3.05s 7.7273067743482 e-02 1.72s
15 1.176507064125706 e-06 3.09s 7.7055432555865 e-02 1.79s
30 5.045708066493429 e-07 3.12s 7.6925458071442 e-02 1.85s
gl ]
s il - "1.0m
ar e MLt
ale e o & NI Stk e | " 3 _?: b nm, 1
0 ':5 (5 (T:- (I-} CT,) é ;} S T b __:T:__: A Py
O COoOREsooeoeeoo o o
-5 Lt *nm,2
T 3000
10 Lt
| 1 1 1 1 1 1 1 1 1 nim,3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
0 T T T T T
*
__-10f 1
E
e = *
W 20 ]
=
=l *
-a0 i
*
40 L L L L L
1 1.5 2 2.5 3 3.8 4

Fig. 3. Approximate solutions of example 3, using (L.D.D) Method.
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Conclusion

This paper presents a new numerical scheme to treat nonlinear
functional equations, specifically systems of nonlinear Fredholm integro-
differential equations of the second kind. The (L.D.D) scheme begins by
linearizing then double discretizing process, and it has proved its efficacy
and precision in numerical applications. Generally, we intend to develop
this scheme in future works to make it able to solve systems of nonlinear
Fredholm integro-differential equations of the second kind with a weakly
singular kernel.
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