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FRACTIONAL MACLAURIN TYPE INEQUALITIES FOR
FUNCTIONS WHOSE FIRST DERIVATIVES ARE s-CONVEX
FUNCTIONS

S. DJENAOUI®Y AND B. MEFTAH®

ABSTRACT. Classical and fractional integral inequalities have become a popular
method and a powerful tool for estimating errors of quadrature formulas. Several
studies on various types of inequality have been conducted and the literature in this
area is vast and diverse. The current study intends to investigate one of the open
three-point Newton-Cotes formulae, known as Maclaurin’s formula, using Riemann-
Liouville fractional operators. To accomplish so, we first created a new identity.
From this identity and through the s-convexity, we have established some new
Maclaurin-type inequalities, we also discussed the cases that can be derived of
our finding. Furthermore, various applications for error estimates are offered to

demonstrate the efficacy of our primary results.

1. INTRODUCTION

Convexity is an important and central topic in several fields, including economics,
finance, optimization, and game theory. Let us review the definition of this useful

concept.
Definition 1.1. [25] A function f: I — R is said to be convex, if

(1.1) fltz+ (1 =t)y) <tf(x)+ (1 —8)f(y)

holds for all z,y € I and all ¢ € [0, 1].

If the function f is concave, then (1.1) holds in the reverse direction.
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It’s clear that convexity and the development of the theory of inequalities go hand
in hand, and we can see right away that one depends on the other. Any function
that works with (1.1) must also work with the famous Hermite-Hadamard inequality,
which can be written as follows: For every convex function f on the interval [a, d]

with a < b, we have

b

(1.2) f(e2) < ﬁ/f@ dr < L0

a

The concept of convexity enjoys a wide field of applications. Because it is so
important, there have been many generalisations, extensions, and new classes of
convex functions. One of the most important is s-convexity, which Breckner came up

with and defines as follows:

Definition 1.2. [6] A nonnegative function f : I C [0,00) — R is said to be s-convex

in the second sense for some fixed s € (0, 1], if

fltz+ (1 —t)y) <tflx)+ (1 —1)°f(y)

holds for all z,y € I and ¢ € [0, 1].

Regarding some appeared papers dealing convexity and integral inequalities we
refer readers to [4, 8, 9, 13, 16, 18, 20, 21, 22, 24] and references therein.

Nowadays, fractional calculus has become a popular tool for scientists. It has been
successfully used in various fields of science and engineering see [11, 15]. Its main
strength in the description of memory and genetic properties of different materials
and processes has aroused great interest for researchers in different fields.

In the problems that have been written about, fractional operators like Caputo,
Hadamard, Katugampola, etc., can be used. But the Riemann-Liouville operator is

employed the most. Here’s how to define it:
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Definition 1.3. [15] Let f € L'[a,b]. The Riemann-Liouville fractional integrals
I f and I;* f of order a > 0 with a > 0 are defined by

@) = oy [ @t s0d o>

b
5e) = oy [ t-a 7 fod b

respectively, where I'(a) = [ e 't*"!dt, is the gamma function and I, f(z) =

19 f(x) = f(a). :

In [29], Sarikaya et al., used the above mentioned operator and established the

fractional analogue of inequality (1.2).

Theorem 1.1. Let f : [a,b] — R be an integrable and positive function with 0 < a <

b. If f is a convex function on |a,b|, then

F(s) < £

: LR (I f () + I f (a)] < HOE I

— 2(b—a 2
Chen and Huan [7], gave some Simpson inequalities for differentiable s-convex

functions via Riemann-Liouville fractional integral.

Theorem 1.2. Let f: I C [0,00) = R be a differentiable mapping on I° such that
f' € L'[a,b], where a,b € I° with a < b. If |f'| is s-convezx on [a,b], for some fived
€ (0, 1], then the following inequality holds:
21D (a «a a @ a
(@) +4F (22) + 1 (0) = Zpie 1 p (282) + 15 f (22)]|

< gt (I @+ 1 O)) (s + L),

Theorem 1.3. Let f: I C [0,00) — R be a differentiable mapping on I° such that

[ € L'a,b], where a,b € I° with a <b. If |f'|? is s-convez on [a,b], for some fized
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€ (0,1] and ¢ > 1 with % + % = 1, then the following inequality holds:

(7 (@) + 47 (52) + £ 1) = 25 1 p (252) + 1 £ (259)]

2 P

3 1 1
P F@EH () (L] e

/\———\dt ((rerdeeeit) (ircepfaron))

More recently, Kamouche et al. [12], discussed the following Simpson-like inequali-

Q»—A

ties for s-convex functions differentiable via the Riemann-Liouville fractional integral.

Theorem 1.4. Let f : [a,b] — R be a differentiable function on (a,b) such that
€ L' [a,b] with 0 < a < b. If |f’| is s-convex in the second sense for some fived
€ (0, 1], then we have

1 __T(a+1) @ a o .
(P (@) +67 (52) + £ ) - 5 (1) 1)+ 12150
< 2 (0.1 (0)

+ (oo (07 + i) 17 (30| + 6.l 0)1)

R

(s+1,a+1) B( >é(a+1,s—|—1).

Theorem 1.5. Let f : [a,b] — R be a differentiable function on (a,b) such that

where

|
—~
=
~—

Q-

€ LY [a,b] with 0 < a < b. If |f'|" is s-convex in the second sense for some fived

€ (0,1] where ¢ > 1 with % +% =1, then we have

U (F () 16 (a2 O e T
L (@467 (58 + 1) = 7528 (1) 10+ 12 S0) )

e M|

< b ( —B(5p+1)+ 4p+:1))2+(;+1)'2F1 -5 Llp+2 %))

1
4P+aa

X(<ff<a>|qt|ﬁ(a7+b)|Q)l (If( )70 ) )

With regard to other articles dealing with fractional inequalities, we refer readers

to [1, 2, 5, 10, 17, 19, 23, 27, 28].
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Motivated by the preceding findings, we propose in this paper to investigate the

Maclaurin’s inequality (see [1, 26]), which can be phrased as follows:

LF () 2f (52) + 37 (552) /f o < ).

where f is four-times continuously differentiable function on (a,b), and H f (4)H =

o
sup [ (z)].
z€(a,b)
To do so, we first establish a new fractional identity. On the basis of this identity
we derive some new Maclaurin-type inequalities for functions whose first derivatives
are s-convex via Riemann-Liouville fractional operators. Applications in numerical

integration are also presented.

2. MAIN RESULTS
In order to prove our results, we need the following lemma and some definitions
Lemma 2.1. Let f : I C R — R be a differentiable function on I°, a,b € I° with
a <b, and f' € L' [a,b], then the following equality holds

3f(5“f:l’)+2f(a7+b)+3f(%5b) 6o— 1F a+1) Qa( 5a+b a+b a+5b b)
8 = a) 6 27

1

= b /i%f (1= 50) a + 2L ds

f ((1 —%)“TH’ —i—%%‘r’b) ds

+] (§ = (L= 50") f (1= 50) 22 o+ 524) de
/

1
—/i(l—%)af/((l—%)%‘r’b—i-%b)d% ,
0

where

QF (g, Bth otb atih p) (]EYOGM) f(a) + IFM)+f(b))

(2.1) 5k (Ig‘sa+b>+f( )+ Lsss- f(aTb))'
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Proof. Let
(2.2) I'=h+1L—1I3— 1y
where
1
]1::t/?ﬂf(ﬂ—;ﬁa+%¥¥)w4
0
1
I = /@_a_%fnxu_@%#+w#m%
0
1
ho= @) (-5 4 252) d
0
and

h:/gu_%wfqyﬁ4%§+%@wﬁ

L= g (1) at )|

a atly a—1
— it (5 - 5 [ @- 0 (@)dw

a a+11’\ a o
(2'3) = 2(b3_a)f (5 (;rb) - 64(b_a()ai})[(5af:b)*f(a)'
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Similarly we obtain
(e} a a x=1
L= 25 (5= (=3 f (1 =) 2 + 252 [,

=2 [ (1- 2) N f (1= ) S“T“’ + %“TH’) dse

5a+b
6
RO = gl () ¢l () - S )
« a a =1
Is = 325 (3 =) F((L=50) 552 + ) |,

1
—i—b?’_—o‘a/%‘)‘_lf ((1 = 5c) 2L + 502450 g5
0

=

- _S(blia)f (a?b) - 8(bg—a)f(%)

a{(;Sb
atl, a a—1
+7(b3_:)1a+1 / (w— %b) f(w)dw
atb
2
_ 15 a+5b 9 a+b 391 (a+1) 7o atb
(2 5) - _S(b—a)f( J% ) 8(b—a)f(T) (b—a)>TT (a+ob) f(T)
and
»=1
I, = 2(;’_&) (1 =50 f (1= ) “E22 4 50b) Y
1
o a—1 a
—1—2(2’_@)/ (1= 5" f (1= 3) 222 + 50b) dse
0
b
a at+1y a—1
_ 2(b3—a)-f( J%5b) + 4(5 ¥ / b—w)" f(w)dw
a+5b
6
a 6a+11—‘ a+1 6%
(2'6) = _2(b3_a)f( 4(—5517) + 4(b_a()a+1)l(a+65b)+f(b)'

Using (2.3)-(2.6) in (2.2), and then multiplying the obtained equality by 2%, we get
the desired result. Thus the proof is completed. O
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Definition 2.1. [15] The incomplete beta function is defined for all complex numbers

x and y with R(z) > 0 and R(y) > 0 and 0 < a < 1 as follows

a

B, (z,y) = / (1=t dt.

0
Remark 1. When we set a = 1, the incomplete beta function becomes the beta

function.

Definition 2.2. [15] The hypergeometric function is defined for ¢ > Rb > 0 and

|z| < 1, as follows

1

2F1(a,b,c;z):m/tb L1 1) (1 = )
0

where B (.,.) is the beta function.

Theorem 2.1. Let f : [a,b] — R be a differentiable function on (a,b) such that
e LY]a,b] with 0 < a < b. If |f'| is s-convez in the second sense for some fized
€ (0, 1], then we have

3f(5a+b)+2f( )+3f(a+5b) 6211 (a+1) Qa( 5a+b a+b a+5b b)
(b—a)” 6 7 2>

< B (AB(a+ 1,5+ 1) (If (@) + | ()

(st + i (07 ) (1 (2] + 17 (=52)))
2( e (1—(-)5)5+1+Bl_(%);(s+1,a+1)

- B+ Ls+ D)7 ()

where B (.,.) and B, (.,.) are the beta and the incomplete beta functions respectively.

OO

a+s+1
«

+

_|_

Proof. From Lemma 2.1, properties of modulus and s-convexity in the second sense

of | f'|, we have

3f(5a+b)+2f( )+3f(a+5b) 62~ 1T(a+1) Qa( S5a+b a+b a+5b b)
(b—a)® 6 7 27 6

OO

1

<t | 1| (a2

0
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[ 13 =1 (0= ) 52 4 32) | e

<t ( [ (=1 @) |7 (252 ) e
L A e [ (NI DI P P CODES

+ (3 = (U =5)") (L= [f (352) [ + 5" [ (%57)]) do=

o [ @) (= | () | (5]

+ [ G =) (= [ (58) [ 422 [ 1 (52)]) do=

Il
o
@‘I
o
Y
=
=
=
O\)—‘
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—
|
AN
S~—
vy
ISH
N
+
=
—~
ot
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o
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vy
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Q=
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1
G [ I A R N R
0

T / (1= )" d%) 117 ) / (1) %Sd%)

0 0

= e (1B (a+ 1,5+ 1) (|f (a)| +|f (b)])
—oa a a+§+1 a a
+ (8(Zi$§3+i’+1) + o (3) ) (|7 Cg2) |+ [ (<52)])

s+1
+2 (8(511) bressy (1 - (§) ) +B

Q=

( )é(s—i-l,oz—l—l)

@+ 1541 7(2)]).

ol

- B

Q=

(

wolw

)

where we have used the fact

1 1
(2.7) /%au—%)Sd%:/(1—%)“%Sd%:3(a+1,3+1),
0 0
1 1
a+s o a+s _ 1
(2.8) /%+d%—/(1—%) ds = 27,
0 0

5(s+1)—3a 3) 2
8

8(s+1)(a+s+1) + (s+1)(g+s+1) (

Y
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1 (3)
(2.10) / B-(1-5)" (1= de =

ool
Q=

(% — %O‘) »dx

o —

a+5+1
e (3) 0

1\ s+1
= B a(s+la+l)— iy (1_(g)a)
1=(3)
and
1
(2.12) / (2= (1= )°) se'dse
()
1
(1)}
= [ -
0
3 3 3 é s+1
= s (1-®)7) - Bt L),
The proof is completed. ]

Corollary 2.1. In Theorem 2.1, if we take s = 1, then we get

5a+b a+5b o
3(2% ) rar(f2) 435 (52) 6 (;Fgm+1 Q2 (a, Sotb atb atsh b)'

00

< 25 (s (F @]+ 17 )
(R 4 2 (9)5) (1 (3] + |1 (=22))
(

—olx (0% Q é (63 %
lo Mt 4 e (9)7 - 1225 (D7) 17/ (2)])




494 S. DJENAOUI AND B. MEFTAH

Corollary 2.2. In Theorem 2.1, if we take o =1, then we get

(ar (35) 27 (352) +3f (552)) = % [ £ ) o

IN

b—a (m (If ()| + 1" (b)])

9

s s5+2 a a
+ (sl + e () (17 (2228)] + 17 (222))

+ <4(s-§i)_(§+2) + 2(s+1§(s+2) (g)s—i—l) ‘f/ (aTb) ‘) :

Corollary 2.3. In Theorem 2.1, if we take o = s = 1, then we get
b

(F(35) 2 (252) 57 (52) — o [ £ ) o

a

25(b—a) (64f’<a>+379|f’(5a7+b)|+314|f’(“7+b)|+379|f'(%5b)|+64|f'<b>)

< 288 1200

Theorem 2.2. Let f : [a,b] — R be a differentiable function on (a,b) such that

€ L' a,b] with 0 < a < b. If|f'|? is s-convez in the second sense for some fized

€ (0,1] where ¢ > 1 with % +% =1, then we have

) 6" (a+1) Hha 5a+b a+b a+5b
— e (0250, 5 S 0)

1 1 1
b—a [1( 1 \P [/ (a)|9+] £ (25| @ G EHOAE
<55 (z (ap+1> (( p— + s

F(E@T B )+ L) R (- L Lp+2.))
1

1
|7 (5[ () (=)
X<< : s+1 } + ; s+1 ) ’

) and o F; (., .,.,.) are the beta and hypergeometric functions respectively.

3f(22l)ror( 2t )+3f (2

00

=

where B (., .
Proof. From Lemma 2.1, properties of modulus, Holder’s inequality, and s-convexity

in the second sense of |f'|?, we have

3(2a)v2r (gt )+ar(25) 6a*1F(a+1)Qa( Satb atb a+5b b)

b—a)® 6 0 2

OO

1
1 q

1
(| e——
0

0

Al
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(oo (frnsecore)
(/ a»pd%) (/»f a%wa@%)»qd%);

" (Z(l—x)”d}f)p (/»f’ (1= ) “z5b+%b)»qd%);)

(/ “”d%);@ L= |f (@) + 5 | (*’”*”))d)

q

ool

S~—
Q=
S =

X
 ~
O\»—A

—~
—~

—_

|
s
—~
g
i
o
SN—

+

xfn
i
—~
=}
w‘+
o
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Q
SN—

QL
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~—

Q=

Q|-

T -

1
a1 1 N\ [ (1@ ()] a3 |4 1y |q a
— 9 | 12 \apt1 s+1 + s+1
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where we have used the fact that

and

- [ geeya=ifa
0 0
1
= LT [
0

Q I~

The proof is completed.

é@f“]a—@wréa

Q) hrafi (1= 2 1p+2.0).

13

« “dz

Corollary 2.4. In Theorem 2.2, if we take s = 1, then we get

<

3f(2%)+2f(442)+3F(S52) 6o 1T(at1)

[ed]

(b—a)®

1 1
e (1 1 \# [ (1F@E+rE) "\ ]r(e2) [ e o
9 | 1\ apt+1 2 + 2

R B+ E)

1
p+1

Q7 (a,

5a+b a+b a+5b b)'
6 > 2 6

2P (1—-1,1,p+2, %))

X(cmwwngw75+(

vwwwwwwjﬁ).

1
P
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Corollary 2.5. In Theorem 2.2, if we take o =1, then we get

é(gf(5a+b)+2f( )+3f a+5b /f

. % ‘f/(a)‘q+|f/<5fl7+b)‘q % |f’<@)‘q+|f’(b)|q %
<t (o) (o (Lolgeey” s (e,
b (g ((\f«w)\ (e >\) <|f'< ) +|f<a+5b>\)q>>
8 s+1 s+1 .

Corollary 2.6. In Theorem 2.2, if we take o = s = 1, then we get

é(gf(5a+b)+2f( )+3f a+5b /f

1

1 o A
bea (1 )7 @l e\ (S| + 1 0))
s = 2 5 + 5

(g <<|f'<w+b>|2+|f'< >|)1 i (e +2|f<a+db>|)%)),

Theorem 2.3. Let f : [a,b] — R be a differentiable function on (a,b) such that

e L' a,b] with 0 < a < b. If |f'|? is s-convex in the second sense for some fized
€ (0,1] where ¢ > 1, then we have

3f( 24 ) +2r (42) 437 () 6o 1T(a+1) Qa( Soth ath atdh b)‘
8 (b—a)® 67 27

1

(8(554(rs;)r(12y+§i1) + (s+1)(2;+s+1) (%)T) }f/ (5a6+b) ‘q

3 3 3 % st ! (a+b) |4
-2y (- Q7)) +CGrLa+) | (=)
(s - (1= ) 4 ClorLas ) 17 ()
8(s+1) 4(s+1) 8 ) 2

atatl L
+ <8(s-§-1—i)_(10)4+§+1) + (s+1)(2§+5+1) (%) > ‘f, (%E’b) ‘q> q)

1
q

1

1- 1
4(a1+1)) ! <4(a+5+1 ‘f (a+5b)‘ iB (Oé+1,8—|—1)|f, (b)|q)q) )
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where

(213) C(x,y) =B (a?,y)—B 1 (yax)a

=(3)* ®)

B(.,.) and B, (.,.) are beta and incomplete beta functions.

Proof. From Lemma 2.1, properties of modulus, power mean inequality, and s-convexity

in the second sense of |f'|?, we have

3(24 )27 (442) 437 (“5®) 6 'r(a+1) Qa( Sat+b a+b a+5b b)’

8 —a)® 6’ 2 6
1 -2 /9 :
< b /i%ad%) / ‘f(l—% a—i—%f"“’b)‘q )
0 0

1—-1
q

q

+ /z—wdz) (/»z—w»»f'<<1—%>z+b+%a+;b>>w)

1 1
+ /i(l—%)ad% /i(l—%)a‘f'((l—%)%%—l—%b)‘qd%
0 0

Q=

Q[

1
q

</ »z—a—m&<<1—%>S>f'<5“6+b>q+%s>f'<a;b>>q>d%)
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1—-1
q

1

1 1 q
) (f’ @ 10 ) ww)

0 0

1—-1
q
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Q=

e ER | [ @)t [ (=3
0

=
=
Y

I,

+ () (17 e [1a a0 [

0 0

=

1-1

=55 () (B e+ Ls e DI @ + e 7 (52))’
1_,
(s 2@ )
5(s+1)—3c + 2a (§)%“‘H }f/ (5(1_.4.(;) ‘q
X 8(s+1)(a+s+1) (s+1)(at+s+1) \8 6
3 3 AN 1 (atb) |9 ‘
{56 ~ 6 (1 - (§) ) +C(s+La+1) ) [f(45)]
at1y -2
+(E+ 2 @)
s+1
(- (- %) T+ crasn) 7 ()
1
+ <8(j-(i-1—;_(1<3c+§+1) + (s+1)(20c+s+1) (%) > ‘f, (+T5b) ‘q> '

+<m>l_;<4(a+s+l ‘f a+5b }q+ B (a+1, s—|—1)|f()|)1),

where € (., .) is defined by (2.13) and we have used (2.7)-(2.12). The proof is achieved.
U

Q=

Corollary 2.7. In Theorem 2.3, if we take s = 1, then we get

) APV IR o irain go (4 B et ot b)’
8 (b—a)® 6 > 27 6

1 1
a I ()| +(at1) | (5%2) | @ (atD)] 7 (2E52) |4/ (b))7 | @
S bT (4(al+l) (( (a+2‘) ( : >| ) +< ‘ (0?+2)| ) )
5—3a 20 (3) %t a 10—3a o (3)%2
T (8(a+1) +ar () ) ((16(a+2) +a5 () ) |
—olx (e} [e3 aTl a aTz a
T (Mrepara 1 20, (3)" — e (1)) |7/ (22)]")
atl at2
+((tepen 2 ()% - 2 ()F) |7 (o)
1
q

at?2
b (s 2 () I (=))
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Corollary 2.8. In Theorem 2.3, if we take o =1, then we get

é(gf(5a+b)+2f( )+3f a+5b /f

1 1
< b <; (<2|f'<a>|q+2<s+1>|ff<5z+b>V)q (el earor) )
- 9 8 (s+1)(s+2) (s+1)(s+2)

17\1-3 5542 2 3\5+2\ | o7 (Batb) |
+ (@) (((8(s+1)(s+2) + (s+1)(s+2) (§) ) ‘f (T)}

1
s— s+1 a q
+ (8(331)(3—1—2) + 4(s+1§(s+2) (g) ’ ) }f/( ;‘b) }q>

+ ((8(5-3;)_(3%2) + 4(s+15)’(s+2) (%)S—H) ‘f/ (aT—H)) ‘q

1
+ (setitem + ot Q7 17 (=01))).

Corollary 2.9. In Theorem 2.3, if we take o = s = 1, then we get

b

LB () 2f (52) 4 3F (559)) - i [ £ (wdu

a

A 1
100 (& [ (@I CF)["N 22 Il )
S 576 (ﬁ (( 3 6 + 6 .
7 1
251|f/(5aT+b>|q+157|f/(aT+b)“l q 157|f/( )‘ +251‘f/<a+5b)‘ q
T 108 + — .

3. APPLICATIONS

Let T be the partition of the points a = xo < 1 < --- < x, = b of the interval

[a, b], and consider the quadrature formula

b
/f(u)du=A<f,T>+R<f,T>,
where

n—1

T; 1 T; 3f 596 +:cz+1)_'_2f (J:Z+xz+1)+3f (sz+5:cz+1))

=0

and R (f,T) denotes the associated approximation error.
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Proposition 3.1. Let n € N and f : [a,b] — R be a differentiable function on (a,b)
with 0 < a < b and f' € L'[a,b]. If |f’| is a s-conver function, then we have

3
—

RO < S (s (1 ()l + 1S (i)

%

Il
o

s s+2 TitTi o +5x;
+ (8(34?1;731+2) + (s+1)2(s+2) (%) ’ ) (‘f, (“TH)} + ‘f, (%) D

+ (4(Sfii§+2) + 2(5+1E))(s+2) (%)H—l) ‘f/ (%) ‘) :

Proof. Applying Corollary 2.2 on the subintervals [x;, z;11] (i =0,1,...,n — 1) of the

partition T, we get

o () o () 7 () - o [ pwan

T

< 2 (i (F @)+ 1S @)
s s+2 Ti+T; T 490%;
+ (8(3:1;@1—1—2) + (s+1)2(s+2) (%) ’ ) (}f, (HTH)‘ + }f/ (%) D

+ <4(s-§i)_(§+2) + 2(s+1§(s+2) (g)s—i_l) ‘f/ (IH_;:Hl) ‘) )

Multiplying both sides of above inequality by (z;+1 — ;), and then summing the

obtained inequalities for all ¢ = 0,1,...,n — 1 and using the triangular inequality, we

get the desired result. U

Proposition 3.2. Let n € N and f : [a,b] — R be a differentiable function on (a,b)

with 0 < a < b and f' € L' [a,b]. If | f'|* is a s-convex function, then we have

1 1
— (21412, |/ ()| 2| (B ) | o (B ) ) 0
R(f,7) Szngjﬂ; ( <( e )’) +( e ))

1 # Sziteip1 |9, 1 TitTip1 |9 % # Titzipn) |7, 1% 2itomit \ |4 %
+(yﬂﬁﬁjpx<< CoE A C (BCE L Ceny )),

Proof. Applying the second inequality of Corollary 2.5 on the subintervals [x;, z;11]

(1=0,1,...,n— 1) of the partition Y, we get
Tit1

é(gf(w#)_‘_Qf(%)_|_3f(fﬂz+fgﬂz+l))_ .1 /f(u)du

Ti41—T4

Ty
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= Tt (2 ((lfl(xi)lu f/<w>‘Q)% + ( fl(”“’é’“)\q+|f'(m1)|q>%>
= n2(pt1)7 S+1 gl
. 1
1 eruf/Mqa f/mq—l-f’qu
+<7)<( e >¢) o () (2% ),)»

Multiplying both sides of the above inequality by (x;11 — x;), and then summing the

obtained inequalities for all ¢ = 0,1,...,n — 1 and using the triangular inequality, we

get the desired result. U

Proposition 3.3. Let n € N and f : [a,b] — R be a differentiable function on (a,b)

with 0 < a < b and f' € L' [a,b]. If |f'|? is a convex function, then we have

n—1 5z;+z; N z;+5z; q 1
Tiy1—; |f ()| 42| f  ——5 4 2| f [f/(zir1)]? )
(1) < Y et (%(( ey (e ))

=0

1 i B 1
251 f/<5%+6%+1)"1+157 f/(xﬁ;wrl)’q q 157 f’(x’Jrz"H)’q—i-ZSl f/(x@+56%+1)’q q
+ 408 + 408 :

Proof. Applying the second inequality of Corollary 2.9 on the subintervals [x;, z;11]

(1=0,1,...,n — 1) of the partition Y, we get

Ti+1—Z4

L(3f () 4 of (B 43 () — / f (u) du

x;

. 1 . 1
< Wa—ay s [ [W@I+2 p(EEE TN 2| (2 o (i)l | @
= 576 17 3 + 3

1 L s 1
251 f/(sxi+6xi+1>’q+157 f/(xi+§i+1>’q q 157 f/<x1+;1+1>’q+251 f/<x1+56x1+1>’q q
T 108 + 108 .

Multiplying both sides of the above inequality by (x;11; — #;), and then summing the

obtained inequalities for all ¢ = 0,1,...,n — 1 and using the triangular inequality, we

get the desired result. O

4. CONCLUSION

In this study, we have considered the Maclaurin type integral inequalities, which

the main results of the paper can be summarized as follows:

(1) A new identity regarding Maclaurin type inequalities is proved.
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(2) Some new fractional Maclaurin type inequalities for functions whose first
derivatives are s-convex are established.
(3) Some special cases are derived.

(4) Applications of our findings are provided.
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