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A NEW HYBRID CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED
OPTIMIZATION

It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear
optimization problems. In this paper, we consider combining the best features of two conjugate gradient
methods. In particular, we give a new conjugate gradient method, based on the hybridization of the
useful DY (Dai-Yuan), and HZ (Hager—Zhang) methods. The hybrid parameters are chosen such that the
proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method
maintains the global convergence property of the above two methods. The numerical results are described
for a set of standard test problems. It is shown that the performance of the proposed method is better than
that of the DY and HZ methods in most cases.
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descent conditions.
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Introduction

The class of nonlinear conjugate gradient methods is one of the useful and practical tech-
niques that require building and developing algorithms to solve the unconstrained optimization
problem [1-7]

min f(z), (0.1)

zeR™

where f is a smooth function. The class generates a sequence of points {x;} iteratively by
Thy1 = Tp + apdy, (0.2)

where «y, is a steplength and dj, is a search direction. Here o is chosen such that the following
strong Wolfe conditions are satisfied:

flar + ondi) — f(2g) < gy dy, (0.3)
ogrd, < gz + apdy) Tdy < —ogy dy, (0.4)

where 0 < § < % and 0 < o < 1. The search directions dj, are defined by

dl = _917 k = 17
diy1 = —Gr+1 + Bed, k> 1,

where gr = g(zx) = V f(zx) and fj, is a conjugate gradient parameter.
Different conjugate gradient algorithms correspond to different choices of the parameter [
that have been proposed. In particular, the choices of

HS _ i1V FR _ gr+11l? PRP _ 1k
‘ dyyr ‘ lgxll? g lgxll?’
LS _ gl;rﬂyk DY _ | grsa]l? HZ _ gl;rﬂyk B 2”3/kH2 dlgm

g _—dlgk’ F _W7 b d;ka (dlyk)Q’
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where yr = gr11 — gk, are proposed in [8-14].
In order to guarantee the global convergence property of the conjugate gradient methods, the
sufficient descent property

dlI—l—lngrl < —c|lgr?, ¢ >0, (0.5)

is enforced with certain conditions on S (see for example [6, 18, 19]).

If the line search is exact, d; gr11 = 0, then the descent property (0.5) holds with equality
and ¢ = 1, DY is reduced to FR, and HS and HZ are reduced to PRP. If, in addition, the objec-
tive function is quadratic, all conjugate gradient parameters are reduced to FR. In this case, the
conjugacy condition ¥, dj; = 0 holds so that obtaining the solution of problem (0.1) requires at
most n iterations (see for example Fletcher [20]). For a general function, the convergence result
depends on the choice of (3 and the line search technique. The first practical global conver-
gence result is obtained for the FR method by [19], based on showing that the sufficient descent
property (0.5) holds, for a certain value of ¢, if the above strong Wolfe conditions are employed
with o < 1/2. This result is extended by [18] to the choice of Powell 3. = max(BFEF ) 0).

However, the convergence result for the DY method requires the Wolfe conditions, given
by (0.3) and the left inequality of (0.4), while for the HZ method convergence is obtained for
any line search technique. In practice, the DY and HZ methods seem to work better than many
other conjugate gradient methods (for further details, see e. g. [14]). Therefore, we consider the
possibility of combining the best features of both methods by defining the search direction as a
linear combination of the form

dir1 = Opdiy + Odil (0.6)

for some choices of the parameters 6; and ;. They are derived in Section 1 such that condi-
tion (0.5) holds with equality as well as the above conjugacy condition. We focus here on the
above combination, which can be extended to other conjugate gradient methods. Section 2 shows
that the proposed method converges globally if the Wolfe conditions hold. In Section 3, we de-
scribe some numerical results to show that the performance of the new method is better than that
of both the DY and HZ methods. Section 4 concludes the paper.

§ 1. A hybrid conjugate gradient algorithm

In this section, we suggest a hybrid conjugate gradient method that defines the search direction
by the linear combination (0.6), which can be written as follows

dir1 = — (O, + Oi) g1 + (On B + 9B 7 )dy. (1.1)
Because the exact line search technique implies the equality
19611 = =0k + ) gria |,
we assume
Or + U >0

to guarantee the descent property. In addition, these parameters will be chosen so that the suffi-
cient descent and conjugacy conditions are satisfied, given respectively by

d;rlngrl = _C”ngrlH27 (1.2)

where ¢ > 0 is a constant and
Yy dy1 = 0. (1.3)
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Premultiplying (1.1) by g,IH and y; and using (1.2) and (1.3), we respectively obtain

(lgesll* = B2 di gis1) Ok + (lgrsaI” — B2 dy )0k = cll g | (1.4)

and
— kG Yk — Oxgi iy + OB (Al yr) + 0 BYY (dy yx) = 0. (1.5)

To consider all possible solutions of this system of two linear equations, we first rearrange
equation (1.5), using the definitions of 7Y and 3/7%, as follows

[yl

d gp 19, =0
d;—yk k 9k+1Vk

G G160k — 2

or, equivalently,
. yrgy gr10k — 2||yil [Pdy gria0k = 0. (1.6)

We consider solving the system (1.4) and (1.6) based on the following four possible cases:

(i) If both values of d; gry1 = 0 and g, gr1 = 0, which hold if the line search is exact and the
function is quadratic (e. g., Fletcher [20]), then equation (1.6) holds for any values of ¢, and v
which satisfy (1.4) for 6, + vV, =c (e.g., let 6, = 0 and ¥y = c = 1).

(i) If d] gry1 = 0 and g/ gr.1 # 0, (1.6) implies 0, = 0 and hence (1.4) yields 95 = ¢ (let
c =1, as for (1)).

(iii) If d} gr11 # 0 and g} g1 = 0, (1.6) implies U5 = 0 and hence by (1.4), it follows that
0, = ék, where

dfyk

0, = —c
g dfgk

which is positive if the Wolfe line search conditions hold.
(iv) For the remaining case, d; gry1 # 0 and g} gr11 # 0, we solve the system to obtain
0, = 0, and U, = V4, where

0, — CHng”Z(y/;rng - fzdlyw

SR L 0
Jy = —cllgrall* (Wi grer — B di yk) (1.8)
A(BYY = B%) ’
where
A = llgrsal* (dg y) — (dg grsr) (W5 Gii1)- (1.9)
The above solution exists if
A(BY = B %) #0 (1.10)

which will be guaranteed below if a certain condition holds. However, if (1.10) does not hold,
the above system does not have a solution. In this case, we enforce only the sufficient descent
condition (1.4) by choosing, as in case (iii), that 9, = 0 and 6}, = 6. (In fact, if 5P = g/7
then d yrg grsr = —2|yrl|*d} gry1 and hence (1.4) holds for 6 + Uy, = 6;.)

1 ~ ~
——,C Where 0<e<1
1+|d] gr41]’ ) ’ -

(e.g., ¢ = 0.9), which is reduced to 1, as required for the cases (i) and (ii), when the exact line
search equation is satisfied.
We now summarize the above analysis by the following result.

To choose one formula for ¢ for all cases, we let ¢ = max (
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Lemma 1. Letting

(ékf@k)’ if(dl—crngrl)(gl—crngrl)( I?Y - /?Z)Ak # 0,
(0r, 9x) = 1 (0,¢),  ifd]gry1 =0, (1.11)

(0,0),  otherwise,

and assume that the Wolfe line search conditions are employed. Then the sufficient descent
condition (1.2) holds for some ¢ > 0. Moreover, the conjugacy condition (1.3) holds for some
¢ > 0, except when Ay (BPY — BHZ) = 0.

For convenience, we let
. = Oy + Vg, Be = B0 + 0B, (1.12)
so that the search direction (1.1) can be written as follows
di+1 = —NkGr+1 + Ordk. (1.13)
From (1.12) and (1.11), we have
(s B)s 3 (d] gran) (9 grrn) Ar # 0,

(M, Br) = < (e, eBLF), if dy grya =0, (1.14)

(O, BER),  otherwise,

obviously, using (1.7) and (1.8), where

i =0+9
_ cllgnrlP (e g1 = B diyr) — cllgral® (e grer = B dy )
Ap(B7Y = B (1.15)
_ Cllgel*(dive)
Ar
B = 087" +0Bi”
_ cllgrall® (i gnr — B dy i) B — cllgrall® (i gn — B diye) B
AL(BPY = BE7) (1.16)

CHgk—l—le(yl;rgk-i-l)
Ay

We note that S5 = 6;,3P" is used in the third case of (1.14). We also note that the condition

DY £ BHZ which appears in the first case of (1.11), is not required in the first case of (1.14)

due to resolving the system (1.4) and (1.6) with respect to 7, and 6, as follows. On substituting
D, = mp — 0, in (1.4) and (1.5), we obtain the following equivalent system:

(g4l = B2 grsr)me + (B2 = BEZ)d), g1 = —cllgua ],
(e gr1 — B dgye)me — (BYY = BIP)d) yibr = 0. (1.17)

Eliminating 6y, we simply obtain

(=N gk lPdi yi + Y ge1di g = —cll g | *di v,



352 A new hybrid conjugate gradient algorithm

which implies (1.15), assuming Ay, # 0, whether 3PY = 3112 holds or not. Similarly, using (1.12)
and (1.17), it follows that

-
B = B 7m+ (B0 = B0 = BT, (118)
L Yk
which, by (1.15), yields (1.16).
We now state the following lemma which shows the possibility of rewriting expressions (1.11)
and (1.14) without switching among three cases, noting that the case g, gx+1 = 0 belongs to the
“otherwise”.

Lemma 2. [f either condition d; gy+1 = 0 or g} gri1 = 0 holds, then the first choice in (1.11) is
reduced to the second and third choices, respectively. Hence, similarly for (1.14).

Proof Using the definitions of 3777 and 3PV, expressions (1.7), (1.8) and (1.9) can be rear-
ranged respectively as follows:

O = 2cl| gk 1l lysll*dy g
Ap(BY = B ) iy

1§k _ C||9k+1||291;r9k+1
Ap(BPY = Bi17)
Ay = (d;—gk-i-l)(gl:—gk-i-l) - d;9k||gk+1||2- (1.19)
In addition,
DY _ pHZ _ gl;rgk-i-l 2y H2 dlgm .
F g dlyk ’ (d;yk)Q

Hence, the condition d;; gx1 = 0 reduces the pair (0, ) to (0, ¢), while the equation gy grr1 =0
reduces (05, Jx) to (6, 0).

Similarly, for choice (1.14), using the above rearrangements, we observe from (1.15)
and (1.16) that the conditions d; gy,1 = 0 and g/ gyr1 = 0 reduce the pair (7, 3;) to (¢, BFEP)
and (6, BF'®), respectively. Note that this result is still valid even when the above two conditions

are satisfied at the same time, although choice (1.11) is undefined in this case. U

This result suggests rewriting the first two cases and part of the third case in (1.11) and (1.14)
as one case, except when (S2Y — BHZ)A, = 0 and A, = 0, respectively.

If these conditions hold, we suggest using a step of any conjugate gradient globally conver-
gent method. In particular, we let (0x, Jx) be equal to (0, 1) which corresponds to the value of
(., Bx) = (1, 8f7). The corresponding search direction satisfies the sufficient descent condi-
tion (0.5) for any line search technique.

Therefore, we replace choices (1.11) and (1.14) by the following two expressions:

H 9 ‘e pDY HZ
(O, 0) = {(ek’ﬂk)’ 57 7B A0 (1.20)

(0,1), otherwise,

and R
(M, Br),  if Ay #0,

o ' (1.21)
(1,5:'7), otherwise.

(ks Br) = {

For convenience, we now show that the inequality A, > 0 holds in many cases.
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Lemma 3. The inequality Ay, > 0 holds if either (i) (d} gr+1)(g) grr1) > 0 or (ii) the strong
Wolfe conditions (0.3) and (0.4) are employed with sufficiently small values of o.

P roof Rearranging (1.19) as

Ay = (dl—crngrl)(glngJrl) - d;IQkHQkHHQa

we observe that A, > 0 if condition (i) holds, since the descent property d; gi < 0 holds. Now,
noting that

Ay > —|d ge1llgg grr1| — di gxl| g |

and using condition (0.4), it follows that

A = —dg gelllgesill® = olgg gisil) (1.22)

which is positive for sufficiently small values of o. UJ

This result shows that A, > 0 if

gks1]” = olgp grr1] > 6, (1.23)

which holds for sufficiently small values of the parameters o and 6 > 0. However, this condition
cannot be ensured when inexact line search is employed, because these parameters are defined
prior to calculating g,.1 (e.g., 0 = 0.1, 6 = 10~%). Therefore, we modify choices (1.20)
and (1.21) respectively as follows:

(0 9 ) . (ékagk)a lfﬁl?y 7& 6[5{27 ||gk+1||2 > O-|gl;rgk+1| + OA-a
kyVk) —
(0,1), otherwise,

and .
(M, Br), i ||kl = olgg grsa| + 6,

(1.24)
(1,88%),  otherwise.

(Mks Br) = {

Therefore, we consider the following outline of our method.
Algorithm 1.

Step 1. Give an initial point 21, € > 0,9, 0 and 6 > 0. Set £ = 1 and let d; = —g;.

Step 2. If || gk || < e, then stop.

Step 3. Calculate a steplength o, such that the strong Wolfe conditions (0.3) and (0.4) hold.
Step 4. Set xp 1 = xp + aud.

Step 5. Compute 7, and S by (1.24) and hence d;. ., by (1.13).

Step 6. Set £ = k + 1 and go to step 2.

§ 2. Global convergence result

Here, we analyse the convergence result for the proposed algorithm on general nonlinear
functions, which is mainly based on Zoutendijk condition and the satisfaction of the sufficient
descent condition.

We first introduce the following hypotheses on the objective function f(x).

H1. The level set S = {z € R" | f(z) < f(x¢)} is bounded.
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H2. In a neighbourhood N of S, the function f is bounded below and continuously differ-
entiable, and its gradient V f(x) is Lipschitz continuous in N, i.e., there exists a constant L > 0
such that

V(@) = V()| < LljE — ] (2.1)
forall z,z € N.
Under these assumptions, the norm ||g(z)|| is bounded for all z € S.

Lemma 4. Supposing that the Hypotheses H1 and H2 are satisfied and the sequence {x;} is
generated by (0.2) such that the descent property holds and oy, is determined such that the Wolfe
condition (0.3) and the left inequality of (0.4) hold. Then, we obtain the Zoutendijk condition

0 Td 2
D (9 "“2 < . 2.2)
2y

Proof See for example [21] and essentially [24]. U

Theorem 1. Let xy be given such that Assumptions H1 and H2 hold and the sequence {x;} be
generated by Algorithm 1 with e = 0. Then

lim inf [lgel| = 0. (2.3)
P ro o f Supposing by contradiction that there exists a positive constant v; such that
lgell = v,  VE=>1
Using this assumption and the sufficient descent condition (1.2), it follows that (g, dj.)?> >
> ?||gil|* > ¢*+1 and hence from (2.2) that > -, m < o0o. Thus, to contradict the latter

inequality, we will show that ||d|| is bounded in the following way.
We assume the first case of (1.24) is used and condition (1.23) holds infinitely many times.
From (1.13) and (1.18), we obtain

?/kT Jk+1
d;—yk
Using the strong Wolfe condition (0.4) and the sufficient descent condition (1.2), we obtain the

following bounds on the curvature:

c(1—0)|lgill* < —(1 = 0)dy g < djyp < —(1+ 0)d}, gs. (2.4)

dit1 = — Mk Gr41 + Ny,

Hence, from the Assumptions H1 and H2, which yield ||gr+1]| < 72 and the Lipschitz condi-
tion (2.1), we obtain

|l gr41]l
| digrl] < |nl || grgr ]| + ST |7k |||
Yk
Lay||d|2
< nl (32 + =y ).
c(1—-o0)7t

We first show that || is bounded. Assuming the strong Wolfe conditions are employed
and using condition (1.23), the definition of 7, as in (1.24) and (1.15), (1.22), the curvature
condition (2.4), and the bound v, we obtain

0k = CHngrl”Q(d;cryk) < cHngHQ(dgyk)
Ay B —dlgk(llgmll? - U|nggk+1|)

< lgrialP(di yr) < cllge+1lIP(1+ o)
- —dggkOA' - o

< M,
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where M = M Substituting this result in (2), it follows that

Loy ||di|
————||d}, 2.
(1= o) 51kl (2.5)

By axl||dk|| — 0, which follows from the first Wolfe condition (0.3), for a constant m € (0, 1)
there exists an integer k;, such that

|dktr|| < My + M

Lrypou||di|
c(l—o)m
Therefore, by (2.5) and (2.6) we get

<m<1, Yk>Fk. (2.6)

Idysal < Mz +mlldill, V> ky

which implies

M _
il € 0+ i 15, V2 R,

ice., el < ¢, where ¢ = 222 4 [[dy, [+,

Now assuming the second case of (1.24) is used infinitely many times.

The Theorem 3.2 in [14], the proof of global convergence shows that ||dy1]|| is bounded, and
the bound is independent of k > ko, i.e., ||dxi1|| < k.

Therefore ||dg1]| < max((, k), it follows that ||dx1|| is bounded and the global convergence
result (2.3) is obtained, which completes the proof. U

Note that this global convergence result is still valid if the choice 3/Z in the second case
of (1.24) is replaced by other choices (e. g., 37" BP R+ etc.) which define globally convergent
methods for certain values of 0. The latter choice is usually referred to as a restart of the method.

§ 3. Numerical results

In this section, we present a comparison between the performance of the new hybrid conjugate
gradient method (1.24) and those of the HZ and DY methods, to determine the performance of all
algorithms on a set of unconstrained optimization test problems [22]. Each problem is tested for a
number of variables 1000, 1500, 2000, 5000, and 10000 so that the total number of test problems
is the 80 unconstrained problems. We run them on a PC, Intel(R) core (TM) i5 CPU 650 @ 3.20
GHz, 3.00 Go RAM. With the parameter ¢ = 7/8, using the strong Wolfe line search conditions
(0.3) and (0.4) with § = 0.0001, o = 0.1, 0 = 0.9 (the methods are referred to as DYHZ/HZ.1
and DYHZ/HZ.9, respectively). The termination criterion for all algorithms is that || g ||* < 107°.

We adopt the performance profiles proposed by Dolan and Moré [23] in order to obtain
Figures 1, 2 and 3, showing CPU time, the number of iterations and the number of functions
and gradient evaluations respectively, required to solve the problems. The figures clearly show
that the proposed hybrid method performs substantially better than that of the efficient DY and
HZ methods. We also observe that using o = 0.1 gives a better performance than ¢ = 0.9, thus
we use the former value for the following experiments We repeated the run for the (1.24), but
with 3/7Z in the second case be replaced by 3P, " and zero (the methods are referred to as
DYHZ/DY.1, DYHZ/PR+.1 and DYHZ/SD.1, respectlvely). The results are represented by the
three Figures 4, 5 and 6. We observed that the performance of the DYHZ/HZ.1 method is a little
better than the other methods.

In addition, we have also done a numerical performance comparison of our method (1.24) with
CG-DESCENT [15], HCG+ [16] and HCG [17] methods, which is presented by the Figures 7, 8
and 9, which showed that the DYHZ/HZ.1 method performs better than the CG-DESCENT, HCG
and HCG+ methods.
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§4. Conclusion

In this article, we have presented a new conjugate gradient method, based on the linear com-

bination of DY and HZ conjugate gradient methods such that the sufficient descent and conjugacy
conditions are satisfied. We also reported some numerical results for a set of standard test prob-
lems which show that the performance of the proposed hybrid DY/HZ method is substantially
better than that of both DY and HZ methods in most cases.
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BECTHUK YIMYPTCKOI'O YHUBEPCUTETA. MATEMATUKA. MEXAHUKA. KOMIIbIOTEPHBIE HAYKH

MATEMATUKA 2023. T. 33. Bem. 2. C. 348-364.

HU. Xaghauousa, X. I'edoait, M. Anv-baanu, M. l'nam
HoBblii ruOpuaHbIi aJIrOPUTM CONPSKEHHOr0 rPaJMeHTa MJIsl ONTUMH3AIUM 0e3 OrpaHuYeHuit

Kniouegvie cnoea: ontumusanus 63 OrpaHUYEHHUM, METOIbI CONPSDKCHHOIO I'PaJMeHTa, YCIOBHUs COIpS-
JKEHHOCTH U JIOCTaTOYHBIE YCIOBHUS CITyCKa.

YIK 519.6
DOI: 10.35634/vm230211

XopouIo M3BECTHO, YTO METOABI COMPSHKEHHOTO TIpaJdeHTa IMOJIEe3Hbl MPU PEIICHHH MacIITa0HbIX 3alad
HEeJIMHEHHOH onTrMu3anuu 0e3 orpannyeHnid. B maHHO# paboTe MBI paccMaTpuBaeM 00beTUHEHHE JTyUIIHX
CBOWCTB JIByX METOZIOB COMNpPsDKEHHOTO IpajueHTa. B 4acTHOCTH, MBI JaeM HOBBIH METOJ COINpPSKEHHOIO
rpaJleHTa, OCHOBAHHBIA Ha rHOpuau3ayy moyie3Hbx MetonoB DY (Dai—Yuan) m HZ (Hager—Zhang). Ia-
paMeTpsl THOpUAA BBIOMPAIOTCS TaKUM 00pa3oM, Y4TOOBI MPEJIOKEHHBI METOH yIOBJIECTBOPSUT YCIOBHUIM
COTIPSDKEHHOCTH M TOCTAaTOYHOTO cirycka. [lokazaHo, 9To HOBBIH METOZ COXpaHSAET CBOIMCTBO TIIOOANTBHOM
CXOIMMOCTH JIByX BBIIICYNOMSHYTBIX MeTomoB. ONcaHbl YUCICHHBIE PE3yNbTaThl sl Habopa cTaHaapT-
HBIX TECTOBBIX 3ajad. [loka3aHo, 4To B GOJBIIMHCTBE ciydaeB 3QQEKTHBHOCTh MPEAJIOKEHHOTO METOa
BhIlIE, yeM y DY u HZ.
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